3.139 \(\int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^5} \, dx\)

Optimal. Leaf size=276 \[ -\frac {1326 a^{23/4} \sqrt [6]{x} \left (\sqrt {a} \sqrt [3]{x}+\sqrt {b}\right ) \sqrt {\frac {a x^{2/3}+b}{\left (\sqrt {a} \sqrt [3]{x}+\sqrt {b}\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{33649 b^{21/4} \sqrt {a x+b \sqrt [3]{x}}}-\frac {2652 a^5 \sqrt {a x+b \sqrt [3]{x}}}{33649 b^5 x^{2/3}}+\frac {7956 a^4 \sqrt {a x+b \sqrt [3]{x}}}{168245 b^4 x^{4/3}}-\frac {884 a^3 \sqrt {a x+b \sqrt [3]{x}}}{24035 b^3 x^2}+\frac {68 a^2 \sqrt {a x+b \sqrt [3]{x}}}{2185 b^2 x^{8/3}}-\frac {12 a \sqrt {a x+b \sqrt [3]{x}}}{437 b x^{10/3}}-\frac {6 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4} \]

[Out]

-6/23*(b*x^(1/3)+a*x)^(1/2)/x^4-12/437*a*(b*x^(1/3)+a*x)^(1/2)/b/x^(10/3)+68/2185*a^2*(b*x^(1/3)+a*x)^(1/2)/b^
2/x^(8/3)-884/24035*a^3*(b*x^(1/3)+a*x)^(1/2)/b^3/x^2+7956/168245*a^4*(b*x^(1/3)+a*x)^(1/2)/b^4/x^(4/3)-2652/3
3649*a^5*(b*x^(1/3)+a*x)^(1/2)/b^5/x^(2/3)-1326/33649*a^(23/4)*x^(1/6)*(cos(2*arctan(a^(1/4)*x^(1/6)/b^(1/4)))
^2)^(1/2)/cos(2*arctan(a^(1/4)*x^(1/6)/b^(1/4)))*EllipticF(sin(2*arctan(a^(1/4)*x^(1/6)/b^(1/4))),1/2*2^(1/2))
*(x^(1/3)*a^(1/2)+b^(1/2))*((b+a*x^(2/3))/(x^(1/3)*a^(1/2)+b^(1/2))^2)^(1/2)/b^(21/4)/(b*x^(1/3)+a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 276, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {2018, 2020, 2025, 2011, 329, 220} \[ -\frac {2652 a^5 \sqrt {a x+b \sqrt [3]{x}}}{33649 b^5 x^{2/3}}+\frac {7956 a^4 \sqrt {a x+b \sqrt [3]{x}}}{168245 b^4 x^{4/3}}-\frac {884 a^3 \sqrt {a x+b \sqrt [3]{x}}}{24035 b^3 x^2}+\frac {68 a^2 \sqrt {a x+b \sqrt [3]{x}}}{2185 b^2 x^{8/3}}-\frac {1326 a^{23/4} \sqrt [6]{x} \left (\sqrt {a} \sqrt [3]{x}+\sqrt {b}\right ) \sqrt {\frac {a x^{2/3}+b}{\left (\sqrt {a} \sqrt [3]{x}+\sqrt {b}\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{33649 b^{21/4} \sqrt {a x+b \sqrt [3]{x}}}-\frac {12 a \sqrt {a x+b \sqrt [3]{x}}}{437 b x^{10/3}}-\frac {6 \sqrt {a x+b \sqrt [3]{x}}}{23 x^4} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x^(1/3) + a*x]/x^5,x]

[Out]

(-6*Sqrt[b*x^(1/3) + a*x])/(23*x^4) - (12*a*Sqrt[b*x^(1/3) + a*x])/(437*b*x^(10/3)) + (68*a^2*Sqrt[b*x^(1/3) +
 a*x])/(2185*b^2*x^(8/3)) - (884*a^3*Sqrt[b*x^(1/3) + a*x])/(24035*b^3*x^2) + (7956*a^4*Sqrt[b*x^(1/3) + a*x])
/(168245*b^4*x^(4/3)) - (2652*a^5*Sqrt[b*x^(1/3) + a*x])/(33649*b^5*x^(2/3)) - (1326*a^(23/4)*(Sqrt[b] + Sqrt[
a]*x^(1/3))*Sqrt[(b + a*x^(2/3))/(Sqrt[b] + Sqrt[a]*x^(1/3))^2]*x^(1/6)*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b
^(1/4)], 1/2])/(33649*b^(21/4)*Sqrt[b*x^(1/3) + a*x])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 2018

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)
/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2025

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {b \sqrt [3]{x}+a x}}{x^5} \, dx &=3 \operatorname {Subst}\left (\int \frac {\sqrt {b x+a x^3}}{x^{13}} \, dx,x,\sqrt [3]{x}\right )\\ &=-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{23 x^4}+\frac {1}{23} (6 a) \operatorname {Subst}\left (\int \frac {1}{x^{10} \sqrt {b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )\\ &=-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{23 x^4}-\frac {12 a \sqrt {b \sqrt [3]{x}+a x}}{437 b x^{10/3}}-\frac {\left (102 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{x^8 \sqrt {b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{437 b}\\ &=-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{23 x^4}-\frac {12 a \sqrt {b \sqrt [3]{x}+a x}}{437 b x^{10/3}}+\frac {68 a^2 \sqrt {b \sqrt [3]{x}+a x}}{2185 b^2 x^{8/3}}+\frac {\left (442 a^3\right ) \operatorname {Subst}\left (\int \frac {1}{x^6 \sqrt {b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{2185 b^2}\\ &=-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{23 x^4}-\frac {12 a \sqrt {b \sqrt [3]{x}+a x}}{437 b x^{10/3}}+\frac {68 a^2 \sqrt {b \sqrt [3]{x}+a x}}{2185 b^2 x^{8/3}}-\frac {884 a^3 \sqrt {b \sqrt [3]{x}+a x}}{24035 b^3 x^2}-\frac {\left (3978 a^4\right ) \operatorname {Subst}\left (\int \frac {1}{x^4 \sqrt {b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{24035 b^3}\\ &=-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{23 x^4}-\frac {12 a \sqrt {b \sqrt [3]{x}+a x}}{437 b x^{10/3}}+\frac {68 a^2 \sqrt {b \sqrt [3]{x}+a x}}{2185 b^2 x^{8/3}}-\frac {884 a^3 \sqrt {b \sqrt [3]{x}+a x}}{24035 b^3 x^2}+\frac {7956 a^4 \sqrt {b \sqrt [3]{x}+a x}}{168245 b^4 x^{4/3}}+\frac {\left (3978 a^5\right ) \operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{33649 b^4}\\ &=-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{23 x^4}-\frac {12 a \sqrt {b \sqrt [3]{x}+a x}}{437 b x^{10/3}}+\frac {68 a^2 \sqrt {b \sqrt [3]{x}+a x}}{2185 b^2 x^{8/3}}-\frac {884 a^3 \sqrt {b \sqrt [3]{x}+a x}}{24035 b^3 x^2}+\frac {7956 a^4 \sqrt {b \sqrt [3]{x}+a x}}{168245 b^4 x^{4/3}}-\frac {2652 a^5 \sqrt {b \sqrt [3]{x}+a x}}{33649 b^5 x^{2/3}}-\frac {\left (1326 a^6\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{33649 b^5}\\ &=-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{23 x^4}-\frac {12 a \sqrt {b \sqrt [3]{x}+a x}}{437 b x^{10/3}}+\frac {68 a^2 \sqrt {b \sqrt [3]{x}+a x}}{2185 b^2 x^{8/3}}-\frac {884 a^3 \sqrt {b \sqrt [3]{x}+a x}}{24035 b^3 x^2}+\frac {7956 a^4 \sqrt {b \sqrt [3]{x}+a x}}{168245 b^4 x^{4/3}}-\frac {2652 a^5 \sqrt {b \sqrt [3]{x}+a x}}{33649 b^5 x^{2/3}}-\frac {\left (1326 a^6 \sqrt {b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {b+a x^2}} \, dx,x,\sqrt [3]{x}\right )}{33649 b^5 \sqrt {b \sqrt [3]{x}+a x}}\\ &=-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{23 x^4}-\frac {12 a \sqrt {b \sqrt [3]{x}+a x}}{437 b x^{10/3}}+\frac {68 a^2 \sqrt {b \sqrt [3]{x}+a x}}{2185 b^2 x^{8/3}}-\frac {884 a^3 \sqrt {b \sqrt [3]{x}+a x}}{24035 b^3 x^2}+\frac {7956 a^4 \sqrt {b \sqrt [3]{x}+a x}}{168245 b^4 x^{4/3}}-\frac {2652 a^5 \sqrt {b \sqrt [3]{x}+a x}}{33649 b^5 x^{2/3}}-\frac {\left (2652 a^6 \sqrt {b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b+a x^4}} \, dx,x,\sqrt [6]{x}\right )}{33649 b^5 \sqrt {b \sqrt [3]{x}+a x}}\\ &=-\frac {6 \sqrt {b \sqrt [3]{x}+a x}}{23 x^4}-\frac {12 a \sqrt {b \sqrt [3]{x}+a x}}{437 b x^{10/3}}+\frac {68 a^2 \sqrt {b \sqrt [3]{x}+a x}}{2185 b^2 x^{8/3}}-\frac {884 a^3 \sqrt {b \sqrt [3]{x}+a x}}{24035 b^3 x^2}+\frac {7956 a^4 \sqrt {b \sqrt [3]{x}+a x}}{168245 b^4 x^{4/3}}-\frac {2652 a^5 \sqrt {b \sqrt [3]{x}+a x}}{33649 b^5 x^{2/3}}-\frac {1326 a^{23/4} \left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right ) \sqrt {\frac {b+a x^{2/3}}{\left (\sqrt {b}+\sqrt {a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{33649 b^{21/4} \sqrt {b \sqrt [3]{x}+a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 59, normalized size = 0.21 \[ -\frac {6 \sqrt {a x+b \sqrt [3]{x}} \, _2F_1\left (-\frac {23}{4},-\frac {1}{2};-\frac {19}{4};-\frac {a x^{2/3}}{b}\right )}{23 x^4 \sqrt {\frac {a x^{2/3}}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x^(1/3) + a*x]/x^5,x]

[Out]

(-6*Sqrt[b*x^(1/3) + a*x]*Hypergeometric2F1[-23/4, -1/2, -19/4, -((a*x^(2/3))/b)])/(23*Sqrt[1 + (a*x^(2/3))/b]
*x^4)

________________________________________________________________________________________

fricas [F]  time = 1.30, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {a x + b x^{\frac {1}{3}}}}{x^{5}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2)/x^5,x, algorithm="fricas")

[Out]

integral(sqrt(a*x + b*x^(1/3))/x^5, x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2)/x^5,x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Warning, integrat
ion of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(x)]sym2poly
/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument ValueEvaluation time: 3.26*(((((
-2618916300*b^9/60235074900/b^9/x^(1/3)/x^(1/3)-275675400*b^8*a/60235074900/b^9)/x^(1/3)/x^(1/3)+312432120*b^7
*a^2/60235074900/b^9)/x^(1/3)/x^(1/3)-369237960*b^6*a^3/60235074900/b^9)/x^(1/3)/x^(1/3)+474734520*b^5*a^4/602
35074900/b^9)/x^(1/3)/x^(1/3)-791224200*b^4*a^5/60235074900/b^9)*sqrt(a/x^(1/3)+b/x)+integrate(-2373672600*b^4
*a^6/60235074900/b^9/3/((x^(1/6))^5*sqrt(a*(x^(1/3))^2+b)*sign(x)),x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 245, normalized size = 0.89 \[ -\frac {1326 \sqrt {-a b}\, \sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x^{\frac {1}{3}}-\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}\, \sqrt {-\frac {a \,x^{\frac {1}{3}}}{\sqrt {-a b}}}\, a^{5} \EllipticF \left (\sqrt {\frac {\left (x^{\frac {1}{3}}+\frac {\sqrt {-a b}}{a}\right ) a}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{33649 \sqrt {a x +b \,x^{\frac {1}{3}}}\, b^{5}}-\frac {2652 \sqrt {a x +b \,x^{\frac {1}{3}}}\, a^{5}}{33649 b^{5} x^{\frac {2}{3}}}+\frac {7956 \sqrt {a x +b \,x^{\frac {1}{3}}}\, a^{4}}{168245 b^{4} x^{\frac {4}{3}}}-\frac {884 \sqrt {a x +b \,x^{\frac {1}{3}}}\, a^{3}}{24035 b^{3} x^{2}}+\frac {68 \sqrt {a x +b \,x^{\frac {1}{3}}}\, a^{2}}{2185 b^{2} x^{\frac {8}{3}}}-\frac {12 \sqrt {a x +b \,x^{\frac {1}{3}}}\, a}{437 b \,x^{\frac {10}{3}}}-\frac {6 \sqrt {a x +b \,x^{\frac {1}{3}}}}{23 x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+b*x^(1/3))^(1/2)/x^5,x)

[Out]

-6/23*(a*x+b*x^(1/3))^(1/2)/x^4-12/437*a*(a*x+b*x^(1/3))^(1/2)/b/x^(10/3)+68/2185*a^2*(a*x+b*x^(1/3))^(1/2)/b^
2/x^(8/3)-884/24035*a^3*(a*x+b*x^(1/3))^(1/2)/b^3/x^2+7956/168245*a^4*(a*x+b*x^(1/3))^(1/2)/b^4/x^(4/3)-2652/3
3649*a^5*(a*x+b*x^(1/3))^(1/2)/b^5/x^(2/3)-1326/33649*a^5/b^5*(-a*b)^(1/2)*((x^(1/3)+(-a*b)^(1/2)/a)/(-a*b)^(1
/2)*a)^(1/2)*(-2*(x^(1/3)-(-a*b)^(1/2)/a)/(-a*b)^(1/2)*a)^(1/2)*(-1/(-a*b)^(1/2)*a*x^(1/3))^(1/2)/(a*x+b*x^(1/
3))^(1/2)*EllipticF(((x^(1/3)+(-a*b)^(1/2)/a)/(-a*b)^(1/2)*a)^(1/2),1/2*2^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a x + b x^{\frac {1}{3}}}}{x^{5}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2)/x^5,x, algorithm="maxima")

[Out]

integrate(sqrt(a*x + b*x^(1/3))/x^5, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {a\,x+b\,x^{1/3}}}{x^5} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x + b*x^(1/3))^(1/2)/x^5,x)

[Out]

int((a*x + b*x^(1/3))^(1/2)/x^5, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a x + b \sqrt [3]{x}}}{x^{5}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**(1/3)+a*x)**(1/2)/x**5,x)

[Out]

Integral(sqrt(a*x + b*x**(1/3))/x**5, x)

________________________________________________________________________________________